Skip to main content

Welkom bij Erasmus MC & Bohn Stafleu van Loghum

Erasmus MC heeft ervoor gezorgd dat je Mijn BSL eenvoudig en snel kunt raadplegen. Je kunt je links eenvoudig registreren. Met deze gegevens kun je thuis, of waar ook ter wereld toegang krijgen tot Mijn BSL.

Registreer

Om ook buiten de locaties van Erasmus MC, thuis bijvoorbeeld, van Mijn BSL gebruik te kunnen maken, moet je jezelf eenmalig registreren. Dit kan alleen vanaf een computer op een van de locaties van Erasmus MC.

Eenmaal geregistreerd kun je thuis of waar ook ter wereld onbeperkt toegang krijgen tot Mijn BSL.

Login

Als u al geregistreerd bent, hoeft u alleen maar in te loggen om onbeperkt toegang te krijgen tot Mijn BSL.

Top

Open Access 11-12-2023 | Brief Report

Brief Report: Virtual Reality to Raise Awareness About Autism

Auteurs: Ioulia Koniou, Elise Douard, Marc J. Lanovaz

Gepubliceerd in: Journal of Autism and Developmental Disorders

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail
insite
ZOEKEN

Abstract

Purpose

The purpose of the study was to develop and test a virtual reality application designed to put the participants “in the shoes” of an autistic person during a routine task.

Method

The study involved a randomized controlled trial that included 103 participants recruited from a technical college. Each participant responded to three questionnaires to measure attitudes, knowledge, and openness toward autism. Prior to responding to these questionnaires, the participants in the experimental group also completed an 8-min virtual reality simulation designed by the research team in collaboration with autistic individuals.

Results

The participants who completed the virtual reality simulation reported better attitudes, more knowledge, and higher openness toward autism than the participants in the control group.

Conclusion

The results of the study suggest that virtual reality simulations are promising tools to raise awareness about autism.
Opmerkingen

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1007/​s10803-023-06216-y.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Although autism has been increasingly present in the news media and television, these portrayals often provide stereotypical and misguided images of autistic individuals to the general population (Jones et al., 2023; Mittmann et al., 2023). These myths and misconceptions may explain why many autistic individuals report facing stigmatization on a daily basis (Crane et al., 2018; Shtayermman, 2009). Stigmatization is characterized by negative attitudes, beliefs, and behaviors that devalue and marginalize individuals, leading to social exclusion (Corrigan & Shapiro, 2010). Researchers have shown that the stigmatization of autistic individuals creates barriers in areas such as education, employment, and healthcare (e.g., Capriola-Hall et al., 2021; Chen et al., 2021; Jones et al., 2021). For instance, autistic students face significant challenges in educational settings, resulting in lower rates of school completion, decreased access to inclusive classrooms and limited availability of support services (Capriola-Hall et al., 2021; Dean & Chang, 2021; Hughes-Roberts et al., 2020; Unigwe et al., 2017).
Similarly, stigmatizing attitudes may lead to discriminatory hiring practices, exclusion from job opportunities, and workplace prejudice (Jones et al., 2021; Roux et al., 2015; Scott et al., 2017). As a result, autistic individuals often face higher rates of unemployment and underemployment compared to their peers, despite their abilities and potential contributions (Scott et al., 2017). Moreover, negative attitudes and stereotypes surrounding autistic individuals may impede access to adequate healthcare services and support (Anderson et al., 2018; Chen et al., 2021; Kinnear et al., 2016).
Previous research has indicated that knowledge about autism and contact with autistic individuals may positively influence attitudes toward this population (Chu et al., 2023; Dachez et al., 2015; Gemegah et al., 2021; Kuzminski et al., 2019). One potential solution to allow people to experience being autistic involves the use of virtual reality (VR). Although VR has shown promising results as a support tool for autistic individuals (e.g., Bravou et al., 2022; Carnett et al., 2023; Lorenzo et al., 2023), researchers have not examined its effects as a tool to raise awareness. That said, some studies have shown that VR perspective-taking experience may result in enhanced prosocial behaviors toward others (e.g., homeless individuals; Herrera et al., 2018; Van Loon et al., 2018). Thus, using virtual reality to put the user “in the shoes” of an autistic person may result in improved perceptions toward this population. To this end, we developed a VR application that allowed participants to experience the perspective of an autistic person during a routine task. Our study aimed to assess the effects of this VR application on attitudes, knowledge, and openness toward autism within a college community.

Method

Participants

We recruited individuals from a French-speaking technical college situated in a suburban/rural environment in Canada. The procedures took place directly at a kiosk located on campus. The recruitment of participants was conducted through written advertisements (posters) on billboards across campus and through mass electronic emails directly from the administration of the technical college. Potential participants could either drop by our kiosk, or book an appointment using email or Microsoft Bookings®. To participate in the study, individuals had to be aged 18 years or older, speak and understand French, not have a diagnosis of autism or other pervasive developmental disorders (self-reported), and report that they had never received awareness training on the topic. The study was approved by the institutional review boards of the technical college, of our research center, and of our university. All participants provided informed consent prior to their inclusion in the study. The recruitment occurred from February 21 to February 25, 2022. In total, 103 individuals participated in our research study.

Virtual Reality Device and Application

In collaboration with autistic individuals, our research team developed a virtual reality application designed to raise awareness about the experience of being autistic. Considering that the main issue lies in the difficulty of people to put themselves “in the shoes” of an autistic person, we simulated potential difficulties that autistic people experience in the sensory and social domains. The application was designed for and installed on a Meta Oculus Quest 2 virtual reality device. The Oculus Quest is a wireless virtual reality headset that does not require the use of a computer, which is affordable, accessible, and easy to use (Bell et al., 2020). The device displays three-dimensional images immersing the user in a virtual environment.
Four autistic individuals participated in a focus group during which the first author asked them a series of questions about their experiences, the most important considerations to address in the application, and ways to simulate autistic characteristics. She also asked the individuals to propose tasks that could be difficult for an autistic person, but easy for a non-autistic person, to complete. Following the focus group, the first and second authors wrote up the tasks to be included in the simulation and sent them back to the autistic individuals for their feedback. This process resulted in two tasks designed to simulate autistic characteristics (see below).
In the application, the user played a virtual character that they could not see directly. The character was an autistic individual who wanted to visit their dentist. In the virtual environment, the user encounters two tasks and has 3 min to complete each one (6 min in total). In the first task, the character is standing outside an elevator on the floor where their dentist office is located. The user must find the office number for their dentist. On the right, there is a letterboard with the office number and the name of every tenant on that floor. To simulate hypersensitivity to external stimuli, the environment overloads the user with visual and auditory distractions such as bright colors, flashing lights, blurry letters, and loud elevator noises. The user can interact with 11 office doors. Attempts at opening incorrect doors lead the user to hearing a voice scolding them for opening the wrong door. The user may try opening multiple doors during the 3-min period. Selecting the correct door leads the user to hear a warm and polite message welcoming them to the dentist’s office. If the user is unable to find the dentist’s office within 3 min, the user is informed that the time has elapsed, and the application moves on to the second task by placing the user directly in the reception area of the office.
In the second task, the user is in the reception area and must leave their medical records in a specific location. Once the user picks up their medical file, the receptionist explains where to put it. She uses a specific intonation and provides a facial cue (i.e., wink and smile) to indicate where the file should be left. To simulate challenges associated with nonverbal communication cues, voice intonations were removed and the receptionist wears sunglasses and a mask, which makes the task difficult to carry out. Furthermore, the visual and auditory distractions remain present during this time. The user may place the folder in 21 different locations in the reception area. The user may try multiple locations during the 3-min period. If the user places the folder in the correct location, the receptionist thanks them warmly and politely. Placing the folder in an incorrect location produces an angry comment from the receptionist. If the user is unable to find the correct location for their medical record within 3 min, the user is informed that the time has elapsed. Regardless of the user’s responding, the simulation ends with a 2-min video that summarizes the experience, explains the context, and provides information about autism. Figure 1 presents some screenshots of the application. The virtual reality application is available for download for free at: https://​www.​oculus.​com/​experiences/​quest/​5897385903663059​/​ (Meta Oculus Quest required) and the English version of the 2-min video at: https://​osf.​io/​e4ad5.

Measures

To characterize our sample, each participant completed a sociodemographic questionnaire with self-reported items on age, gender, first language learned, citizenship status, student status, education level, domain of study, prior awareness of autism, prior meeting of an autistic individual, and type of connection to autistic individuals.
To assess explicit societal attitudes toward autistic individuals, we used the Societal Attitudes Toward Autism questionnaire (SATA; Flood et al., 2013). Each of the 16 items of the questionnaire has a scale from 0 (Strongly Disagree) to 4 (Strongly Agree) with three items scored in reverse. This instrument has good psychometric values (Flood et al., 2013). The overall score is calculated by summing the items. The lower the score, the more positive the attitudes toward autistic individuals. To assess knowledge about autism, the participants completed the Autism Spectrum Knowledge Scale, General Population version (ASK-GP; McClain et al., 2019). The scale consists of 31 true-or-false items about autism. The overall score is calculated according to the level of difficulty of the item. The higher the score, the more knowledge the person has about autism. The scale has satisfactory psychometric values (McClain et al., 2019). To assess the openness of the participants toward an autistic individual, participants completed the Openness to Autism Scale (OAS; Nevill & White, 2011). The participants read the description of an autistic adult, “Jamie”, although the diagnosis itself is not explicitly mentioned in the description. Then, the questionnaire involved responding to 7 items scaled from 0 (strongly disagree) to 5 (strongly agree) with two items scored in reverse. This instrument has satisfactory psychometric values (Nevill & White, 2011). The overall score is calculated by adding all the items. Higher scores indicate more openness toward autistic individuals. The research team translated each scale to French using a back translation procedure (Weeks et al., 2007). The detailed procedures are described in Koniou et al. (in press).

Procedures

We conducted a randomized controlled trial where participants were randomly divided into two groups: the experimental group, which used the virtual reality application and responded to the questionnaires, and the control group, which only responded to the questionnaires. Our procedures involved block randomization with each block having a size of four. Two participants in each block were randomly assigned to the control group and the other two to the experimental group. This manipulation prevented the creation of highly imbalanced groups. After obtaining consent and ensuring that the participants met the inclusion criteria, those assigned to the experimental group performed the simulation, which lasted 8 min. To complete the simulation, the participants put on the head-mounted device in an area behind our kiosk, which was enclosed in portable wall panels. Following the simulation, the participants completed the sociodemographic questionnaire (2 min), and our translated French versions of the SATA (5 min), ASK-GP (7 min) and the OAS (3 min). The participants of the control group did not perform the simulation beforehand: they only completed the four questionnaires.

Statistical Analyses

Our analyses involved the computation of descriptive statistics on the sociodemographic factors and dependent variables for the control and experimental groups. A stepwise algorithm which selected the logistic model with the smallest Akaike information criterion (AIC) examined potential group differences with regards to the sociodemographic information (i.e., age, sex, language, immigration status, employment, education, domain of study, type of connection to autistic individuals and previous knowledge/experience with autism). To estimate the effect size of the VR simulation on societal attitudes, knowledge, and openness toward autism, we used a linear model for each of the scale scores (SATA, OAS, ASK-GP). Each linear regression model included the scale score as main variable, integrated the group as explanatory variable and several sociodemographic measures as confounding factors (age, sex, knowing an autistic individual and previous knowledge/experience with autism). A Bonferroni correction was applied to avoid errors due to multiple testing (significance threshold for the effect-sizes on scale scores = 0.017). All analyses involved the use of R, version 4.1.2. All our code and data are publicly available in an online repository at https://​osf.​io/​qge4y/​ (see Supplementary Materials for more details about the analyses).

Results

After screening 109 potentially eligible participants, 4 participants were excluded because they were autistic (self-reported), 1 refused to participate and 1 had to be excluded due to a bug in the application (see Fig. 2 for CONSORT diagram). Our sample included a total of 103 participants that had been allocated to either the experimental group (n = 50) or the control group (n = 53). Table 1 presents the characteristics of the participants. We found no significant group difference concerning the sociodemographic measures included in the logistic regression model selected by the stepwise algorithm with the exception of the domain of study (see Table S1 in the Supplementary Information). The experimental group included sixteen participants studying mathematics, physical, life, and computer sciences whereas the control group only had five. Therefore, we adjusted the following linear models with this covariable.
Table 1
Sociodemographic Characteristics of the Participants in Each Group
 
Experimental Group (n = 50)
Control Group (n = 53)
Gender
  
 Female
27
35
 Male
23
15
 Other/Prefer not to say
0
3
Age
  
 18 to 24 years old
41
48
 25 to 34 years old
5
4
 35 years old and more
4
1
First Language
  
 French
45
50
 English or other
5
3
Status
  
 Canadian citizen
44
47
 Permanent resident or other
6
6
Student Status
  
 Full-time
46
48
 Part-time
2
2
 Not a student
2
3
Education
  
 High school diploma not completed
1
0
 High school diploma completed
38
44
 College or certificate
8
6
 University degree
3
3
Domain
  
 Arts and humanities
15
24
 Health and social sciences
10
7
 Mathematics, physical, life, and computer sciences
16
5
 Other
9
17
Have you heard of autism?
  
 Yes
47
52
 No
3
1
Have you ever met an autistic individual?
  
 Yes
41
47
 No
9
6
What is your closest connection with this individual?
  
 None
9
6
 Colleague at work or school
14
18
 Close friend or child of a close friend
20
16
 Family member or live with this individual
7
13
The linear models showed that the VR simulation had a significant effect on the three measures investigated while adjusting for confounding factors and correcting for multiple statistical tests (see Table 2; Fig. 3). For societal attitudes, the experimental group had a significantly lower average SATA score in comparison to the control group and the VR effect size was of -5.39 points of SATA (SE = 1.17, p < .0001). When the participant knew an autistic person, particularly a colleague, the score was also significantly lower with an effect size of -4.72 points for the SATA (SE = 1.77, p = .009), independently of being exposed to the VR simulation or not (see Tables S2 and S3 in the Supplementary Information). Regarding knowledge of autism, the experimental group had a significantly higher average ASK-GP score in comparison to the control group and a VR effect size of 13.58 points (SE = 2.05, p = < 0.0001). However, knowing an autistic person did not influence the scores on the ASK-GP. Finally, the experimental group had significantly higher OAS scores in comparison to the control group, with a VR effect size of 2.99 points (SE = 0.77, p = .0002). When the participant knew an autistic person, notably a close friend or a child of a close friend, the score was also significantly higher, independently of being exposed to the VR simulation with an effect size of 4.02 points on the OAS (SE = 1.16, p = .0008; Tables S2 and S3 in the Supplementary Information).
Table 2
Effect Size of the VR Simulation on the Outcomes
Outcomes
Experimental group
Control group
Coefficient
95% CI
p
Mean
SD
Mean
SD
SATA
22.54
5.48
27.19
5.53
-5.39
-7.71; -3.06
< 0.0001
ASK-GP
75.68
9.49
61.90
9.15
13.58
9.51; 17.66
< 0.0001
OAS
29.12
3.25
26.36
4.11
2.99
1.47; 4.51
0.0002
Note. SATA: societal attitudes toward autism, OAS: openness to autism scale, ASK-GP: autism spectrum knowledge scale, general population version, Experimental group (n = 50); Control Group (n = 53). Effect-size of the VR intervention on scale score outcomes were predicted by linear models. All models were adjusted for age, sex, knowing an autistic individual and previous knowledge/experience with autism. p-values presented are not adjusted for multiple testing (p-value threshold after Bonferroni correction = 0.017). SD: standard error, 95% CI: 95% of confidence interval

Discussion

The results of our study indicate that the VR simulation positively influenced the attitudes, knowledge, and openness of the participants toward autism. These results are consistent with those of prior studies that have used VR to raise awareness about other neurodivergences (Formosa et al., 2018; Tassinari et al., 2022; Yuen & Mak, 2021). A strength of our study is that autistic individuals were involved in the design of the tasks and content included in the virtual reality application. This inclusion may have improved the social validity of the autistic simulation that our participants experienced. One mechanism that may explain the observed changes is that being placed in the shoes of the autistic person may allow the user to develop more empathy toward people with different needs (Lara & Rueda, 2021). That is, prior research had shown that VR perspective-taking experiences may promote prosocial behavior toward people that we consider different (Herrera et al., 2018). Moreover, the informational video embedded within the VR application may have improved knowledge by providing more details and nuance about the condition, which in turn influenced attitudes and openness toward autism in a positive way (Kuzminski et al., 2019; Nevill & White, 2011; Park et al., 2010).
One challenge of using VR to raise awareness is that access to head-mounted devices remains limited in the general population. For this reason, the VR application targets large organizations that train staff to work with autistic individuals or who service this population. For example, universities could use the application to train future professionals (e.g., occupational therapists, behavior analysts), health centers and hospitals could adopt the simulation to raise awareness among their personnel who have contact with autistic individuals (e.g., administrative assistants, nurses), and employers who integrate autistic individuals could raise awareness among managers and co-workers. Albeit promising, VR simulations may not be suitable for everyone. Some parts of the population (e.g., older adults) may experience challenges in moving around in the VR environment, especially if they have never used a joystick in the past.
The pandemic presented unforeseen challenges in conducting the research study. Our original study targeted recruitment of individuals from the general population in a public space. Due to the pandemic, free access to several locations was restricted in our home province, which led us to set up our kiosk in a technical college. Targeting another population may have produced different results. Another limitation of our study was that we did not conduct a long-term follow-up. Hence, whether the observed effects persist over time remains unknown. The lack of any training in our control group prevents us from comparing virtual reality to other ways of raising awareness; that is, whether other types of support tools would be as effective as VR remains an open question. A final limitation of our study is that we relied exclusively on self-report measures to examine our three outcome variables. As such, the extent to which these effects translated to observable behavior changes needs to be further investigated.
Future research should adopt a longitudinal design to track whether these positive outcomes persist. Our virtual reality application simulated a single example of how an autistic person may experience a specific event, going to the dentist. Given the heterogeneity of autistic individuals, future simulations should present a broader range of experiences to prevent the development of stereotypical perceptions. Furthermore, researchers should examine more concrete manifestations of stigmatization (e.g., real-life observations) and the ability of VR to reduce them. Opportunities for social contact and behavioral observations can capture a more natural response and realistic desire for social distance or avoidance, as opposed to self-report scales. Overall, we propose that future research in this area continue to include more individuals to create a sample representative of the population observed over a longer period of time.

Acknowledgements

The authors would like to thank the autistic individuals who provided support for the development of the application as well as Philippe Leroux, Noémie Hogan, Victoria Chagnon, and Isabelle Préfontaine for their assistance with data collection.

Declarations

Ethical Approval

All procedures performed in this study were in accordance with the ethical standards of the Canadian Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans as well as with the 1964 Helsinki declaration and its later amendments.
The participants provided informed consent prior to their inclusion.

Conflict of Interest

The first and second authors declare that they have no conflict of interest. The third author declares that he owns the intellectual property rights for the virtual reality application.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Onze productaanbevelingen

BSL Psychologie Totaal

Met BSL Psychologie Totaal blijf je als professional steeds op de hoogte van de nieuwste ontwikkelingen binnen jouw vak. Met het online abonnement heb je toegang tot een groot aantal boeken, protocollen, vaktijdschriften en e-learnings op het gebied van psychologie en psychiatrie. Zo kun je op je gemak en wanneer het jou het beste uitkomt verdiepen in jouw vakgebied.

BSL Academy Accare GGZ collective

BSL GOP_opleiding GZ-psycholoog

Bijlagen

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatuur
go back to reference Bravou, V., Oikonomidou, D., & Drigas, A. S. (2022). Applications of virtual reality for autism inclusion. A review. Retos: Nuevas Tendencias en Educación Física, Deporte y Recreación, (45), 779–785. Bravou, V., Oikonomidou, D., & Drigas, A. S. (2022). Applications of virtual reality for autism inclusion. A review. Retos: Nuevas Tendencias en Educación Física, Deporte y Recreación, (45), 779–785.
go back to reference Formosa, N. J., Morrison, B. W., Hill, G., & Stone, D. (2018). Testing the efficacy of a virtual reality-based simulation in enhancing users’ knowledge, attitudes, and empathy relating to psychosis. Australian Journal of Psychology, 70(1), 57–65. https://doi.org/10.1111/ajpy.12167CrossRef Formosa, N. J., Morrison, B. W., Hill, G., & Stone, D. (2018). Testing the efficacy of a virtual reality-based simulation in enhancing users’ knowledge, attitudes, and empathy relating to psychosis. Australian Journal of Psychology, 70(1), 57–65. https://​doi.​org/​10.​1111/​ajpy.​12167CrossRef
go back to reference Kinnear, S. H., Link, B. G., Ballan, M. S., & Fischbach, R. L. (2016). Understanding the experience of stigma for parents of children with autism spectrum disorder and the role stigma plays in families’ lives. Journal of Autism and Developmental Disorders, 46(3), 942–953. https://doi.org/10.1007/s10803-015-2637-9CrossRef Kinnear, S. H., Link, B. G., Ballan, M. S., & Fischbach, R. L. (2016). Understanding the experience of stigma for parents of children with autism spectrum disorder and the role stigma plays in families’ lives. Journal of Autism and Developmental Disorders, 46(3), 942–953. https://​doi.​org/​10.​1007/​s10803-015-2637-9CrossRef
go back to reference Koniou, I., Douard, E., & Lanovaz, M. J. (in press). Mesurer les attitudes explicites, les connaissances et l’ouverture à l’autisme dans une population francophone [Measuring explicit attitudes, knowledge, and openess toward autism in a French-speaking population]. Revue de Psychoéducation. Koniou, I., Douard, E., & Lanovaz, M. J. (in press). Mesurer les attitudes explicites, les connaissances et l’ouverture à l’autisme dans une population francophone [Measuring explicit attitudes, knowledge, and openess toward autism in a French-speaking population]. Revue de Psychoéducation.
go back to reference McClain, M. B., Harris, B., Schwartz, S. E., Benallie, K. J., Golson, M. E., & Benney, C. M. (2019). Brief report: Development and validation of the autism spectrum knowledge scale general population version: Preliminary analyses. Journal of Autism and Developmental Disorders, 49(7), 3007–3015. https://doi.org/10.1007/s10803-019-04019-8CrossRefPubMed McClain, M. B., Harris, B., Schwartz, S. E., Benallie, K. J., Golson, M. E., & Benney, C. M. (2019). Brief report: Development and validation of the autism spectrum knowledge scale general population version: Preliminary analyses. Journal of Autism and Developmental Disorders, 49(7), 3007–3015. https://​doi.​org/​10.​1007/​s10803-019-04019-8CrossRefPubMed
go back to reference Mittmann, G., Schrank, B., & Steiner-Hofbauer, V. (2023). Portrayal of autism in mainstream media–a scoping review about representation, stigmatisation and effects on consumers in non-fiction and fiction media. Current Psychology. Advance online publication. https://doi.org/10.1007/s12144-023-04959-6 Mittmann, G., Schrank, B., & Steiner-Hofbauer, V. (2023). Portrayal of autism in mainstream media–a scoping review about representation, stigmatisation and effects on consumers in non-fiction and fiction media. Current Psychology. Advance online publication. https://​doi.​org/​10.​1007/​s12144-023-04959-6
go back to reference Roux, A. M., Shattuck, P. T., Rast, J. E., Rava, J. A., Edwards, A. D., Wei, X., McCracken, M., & Yu, J. W. (2015). Characteristics of two-year college students on the autism spectrum and their support services experiences. Autism Research and Treatment, 2015, 391693. https://doi.org/10.1155/2015/391693 Roux, A. M., Shattuck, P. T., Rast, J. E., Rava, J. A., Edwards, A. D., Wei, X., McCracken, M., & Yu, J. W. (2015). Characteristics of two-year college students on the autism spectrum and their support services experiences. Autism Research and Treatment, 2015, 391693. https://​doi.​org/​10.​1155/​2015/​391693
go back to reference Shtayermman, O. (2009). An exploratory study of the stigma associated with a diagnosis of Asperger’s syndrome: The mental health impact on the adolescents and young adults diagnosed with a disability with a social nature. Journal of Human Behavior in the Social Environment, 19(3), 298–313. https://doi.org/10.1080/10911350902790720CrossRef Shtayermman, O. (2009). An exploratory study of the stigma associated with a diagnosis of Asperger’s syndrome: The mental health impact on the adolescents and young adults diagnosed with a disability with a social nature. Journal of Human Behavior in the Social Environment, 19(3), 298–313. https://​doi.​org/​10.​1080/​1091135090279072​0CrossRef
go back to reference Yuen, A. S. Y., & Mak, W. W. S. (2021). The effects of immersive virtual reality in reducing public stigma of mental Illness in the university population of Hong Kong: Randomized controlled trial. Journal of Medical Internet Research, 23(7), e23683. https://doi.org/10.2196/23683CrossRefPubMed Yuen, A. S. Y., & Mak, W. W. S. (2021). The effects of immersive virtual reality in reducing public stigma of mental Illness in the university population of Hong Kong: Randomized controlled trial. Journal of Medical Internet Research, 23(7), e23683. https://​doi.​org/​10.​2196/​23683CrossRefPubMed
Metagegevens
Titel
Brief Report: Virtual Reality to Raise Awareness About Autism
Auteurs
Ioulia Koniou
Elise Douard
Marc J. Lanovaz
Publicatiedatum
11-12-2023
Uitgeverij
Springer US
Gepubliceerd in
Journal of Autism and Developmental Disorders
Print ISSN: 0162-3257
Elektronisch ISSN: 1573-3432
DOI
https://doi.org/10.1007/s10803-023-06216-y