Skip to main content

Welkom bij Erasmus MC & Bohn Stafleu van Loghum

Erasmus MC heeft ervoor gezorgd dat je Mijn BSL eenvoudig en snel kunt raadplegen. Je kunt je links eenvoudig registreren. Met deze gegevens kun je thuis, of waar ook ter wereld toegang krijgen tot Mijn BSL.

Registreer

Om ook buiten de locaties van Erasmus MC, thuis bijvoorbeeld, van Mijn BSL gebruik te kunnen maken, moet je jezelf eenmalig registreren. Dit kan alleen vanaf een computer op een van de locaties van Erasmus MC.

Eenmaal geregistreerd kun je thuis of waar ook ter wereld onbeperkt toegang krijgen tot Mijn BSL.

Login

Als u al geregistreerd bent, hoeft u alleen maar in te loggen om onbeperkt toegang te krijgen tot Mijn BSL.

Top

28-03-2025 | Commentary

Interpreting the meaningfulness of treatment effects estimated in parallel groups designs: comment on Trigg et al.

Auteur: Kevin Weinfurt

Gepubliceerd in: Quality of Life Research

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Draft guidance from the U.S. Food and Drug Administration states that one can interpret a treatment effect on a clinical outcome assessment–based endpoint when expressed as some difference between group means. Recently, Trigg et al. examined different approaches for deriving thresholds for interpreting such between-group differences. In this commentary, I make several observations to advance further discussion around this issue. Some key points are (1) rather than “between-group difference,” specify the level at which you wish to infer a treatment effect: population or individual; (2) points of reference may be different for interpreting individual- and population-level treatment effect estimates; (3) who provides input and what types of anchor variables are used to generate points of reference might differ for interpreting individual- versus population-level estimates of treatment effect; and (4) in a parallel groups design, meaningful within-patient change is not especially relevant for understanding the meaningfulness of a treatment effect.
Voetnoten
1
Note that in a parallel groups design, the estimated treatment effect—whether marginal or conditional—will always be a kind of average (known technically as an expectation). For example, a marginal estimate from a linear model provides the expectation for an entire population with the same overall characteristics (demographic, clinical, etc.) as the trial sample. A conditional estimate from a linear model with eight baseline covariates will provide the expected average treatment effect for all patients with a specific combination of values for the covariates.
 
2
To avoid the connotation that there is a single, precisely known “threshold,” I will use “point of reference” to refer to the value of a score difference that might be viewed by patients as meaningful.
 
3
Technically, the treatment effect is evaluated in terms of a COA-based endpoint, which may or may not be the same as the COA score at a fixed time point or a change in COA score from baseline to a fixed time point. For simplicity here, I am assuming that the COA score is the same as the trial endpoint, but the argument would apply to any type of COA-based endpoint.
 
4
This illustration was inspired by Sect. 8.2.11 in Senn [16].
 
5
Note that while Trigg et al.’s simple example compared mean change-from-baseline scores between study groups, a real trial analysis would use some model (e.g., ANCOVA) to adjust for the baseline COA score to improve the efficiency of the analysis [17].
 
Literatuur
10.
go back to reference Remiro-Azócar, A., Heath, A., & Baio, G. (2021). Conflating marginal and conditional treatment effects: Comments on Assessing the performance of population adjustment methods for anchored indirect comparisons: A simulation study. Statistics In Medicine, 40(11), 2753–2758. https://doi.org/10.1002/sim.8857CrossRefPubMed Remiro-Azócar, A., Heath, A., & Baio, G. (2021). Conflating marginal and conditional treatment effects: Comments on Assessing the performance of population adjustment methods for anchored indirect comparisons: A simulation study. Statistics In Medicine, 40(11), 2753–2758. https://​doi.​org/​10.​1002/​sim.​8857CrossRefPubMed
16.
go back to reference Senn, S. (2021). Statistical Issues in Drug Development (3rd ed.). Wiley. Senn, S. (2021). Statistical Issues in Drug Development (3rd ed.). Wiley.
Metagegevens
Titel
Interpreting the meaningfulness of treatment effects estimated in parallel groups designs: comment on Trigg et al.
Auteur
Kevin Weinfurt
Publicatiedatum
28-03-2025
Uitgeverij
Springer New York
Gepubliceerd in
Quality of Life Research
Print ISSN: 0962-9343
Elektronisch ISSN: 1573-2649
DOI
https://doi.org/10.1007/s11136-025-03952-9