Skip to main content

Welkom bij Erasmus MC & Bohn Stafleu van Loghum

Erasmus MC heeft ervoor gezorgd dat je Mijn BSL eenvoudig en snel kunt raadplegen. Je kunt je links eenvoudig registreren. Met deze gegevens kun je thuis, of waar ook ter wereld toegang krijgen tot Mijn BSL.

Registreer

Om ook buiten de locaties van Erasmus MC, thuis bijvoorbeeld, van Mijn BSL gebruik te kunnen maken, moet je jezelf eenmalig registreren. Dit kan alleen vanaf een computer op een van de locaties van Erasmus MC.

Eenmaal geregistreerd kun je thuis of waar ook ter wereld onbeperkt toegang krijgen tot Mijn BSL.

Login

Als u al geregistreerd bent, hoeft u alleen maar in te loggen om onbeperkt toegang te krijgen tot Mijn BSL.

Top
Gepubliceerd in:

21-09-2024

Characterizing daily physical activity patterns with unsupervised learning via functional mixture models

Auteurs: Ipek Ensari, Billy A. Caceres, Kasey B. Jackman, Jeff Goldsmith, Niurka M. Suero-Tejeda, Michelle L. Odlum, Suzanne Bakken

Gepubliceerd in: Journal of Behavioral Medicine | Uitgave 1/2025

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Physical inactivity is a significant public health concern. Consideration of inter-individual variations in physical activity (PA) trends can provide additional information about the groups under study to aid intervention design. This study aims to identify latent profiles (“phenotypes”) based on daily PA trends among adults living in. This was a secondary analysis of 724 person-level days of accelerometry data from 133 urban-dwelling adults (89% Latinx, age = 19–77 years). We used Actigraph accelerometers and the Actilife software to collect and process 24-hour PA data. We implemented a probabilistic clustering technique based on functional mixture models. Multiple days of data per person were averaged for entry into the models. We evaluated step counts, moderate-intensity PA (MOD), total activity and sedentary minutes as potential model variables. Bayesian Information Criterion (BIC) index was used to select the model that provided the best fit for the data. A 4-cluster resolution provided the best fit for the data (i.e., BIC=-3257, improvements of Δ = 13 and Δ = 7 from 3- and 5-cluster models, respectively). MOD provided the greatest between-cluster discrimination. Phenotype 1 (N = 61) was characterized by a morning peak in PA that declined until bedtime. Later bedtimes and the highest daily PA volume were distinct for phenotype 2 (N = 18), along with a similar peak pattern. Phenotype 3 (N = 29) membership was associated with the lowest PA levels throughout the day. Phenotype 4 was characterized by a more evenly distributed PA during the day, and later waking/bedtimes. Our findings point to distinct, interpretable PA phenotypes based on temporal patterns. Functional clustering of PA data could provide additional actionable points for tailoring behavioral interventions.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Ainsworth, B. E., Haskell, W. L., Herrmann, S. D., Meckes, N., Bassett, D. R., Tudor-Locke, C., Greer, J. L., Vezina, J., Whitt-Glover, M. C., & Leon, A. S. (2011). 2011 Compendium of physical activities: A second update of codes and MET values. Medicine and Science in Sports and Exercise, 43(8), 1575–1581.CrossRefPubMed Ainsworth, B. E., Haskell, W. L., Herrmann, S. D., Meckes, N., Bassett, D. R., Tudor-Locke, C., Greer, J. L., Vezina, J., Whitt-Glover, M. C., & Leon, A. S. (2011). 2011 Compendium of physical activities: A second update of codes and MET values. Medicine and Science in Sports and Exercise, 43(8), 1575–1581.CrossRefPubMed
go back to reference Benassi, M., Garofalo, S., Ambrosini, F., P Sant’Angelo, R., Raggini, R., De Paoli, G., Ravani, C., Giovagnoli, S., Orsoni, M., & Piraccini, G. (2020). Using two-step cluster analysis and latent class cluster analysis to classify the cognitive heterogeneity of cross-diagnostic psychiatric inpatients. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.01085. Original Research. Benassi, M., Garofalo, S., Ambrosini, F., P Sant’Angelo, R., Raggini, R., De Paoli, G., Ravani, C., Giovagnoli, S., Orsoni, M., & Piraccini, G. (2020). Using two-step cluster analysis and latent class cluster analysis to classify the cognitive heterogeneity of cross-diagnostic psychiatric inpatients. Frontiers in Psychology, 11. https://​doi.​org/​10.​3389/​fpsyg.​2020.​01085. Original Research.
go back to reference Bull, F. C., Al-Ansari, S. S., Biddle, S., Borodulin, K., Buman, M. P., Cardon, G., Carty, C., Chaput, J. P., Chastin, S., Chou, R., Dempsey, P. C., DiPietro, L., Ekelund, U., Firth, J., Friedenreich, C. M., Garcia, L., Gichu, M., Jago, R., Katzmarzyk, P. T., & Willumsen, J. F. (2020). World Health Organization 2020 guidelines on physical activity and sedentary behaviour. British Journal of Sports Medicine, 54(24), 1451–1462. https://doi.org/10.1136/bjsports-2020-102955CrossRefPubMed Bull, F. C., Al-Ansari, S. S., Biddle, S., Borodulin, K., Buman, M. P., Cardon, G., Carty, C., Chaput, J. P., Chastin, S., Chou, R., Dempsey, P. C., DiPietro, L., Ekelund, U., Firth, J., Friedenreich, C. M., Garcia, L., Gichu, M., Jago, R., Katzmarzyk, P. T., & Willumsen, J. F. (2020). World Health Organization 2020 guidelines on physical activity and sedentary behaviour. British Journal of Sports Medicine, 54(24), 1451–1462. https://​doi.​org/​10.​1136/​bjsports-2020-102955CrossRefPubMed
go back to reference Cella, D., Riley, W., Stone, A., Rothrock, N., Reeve, B., Yount, S., Amtmann, D., Bode, R., Buysse, D., & Choi, S. (2010). The patient-reported outcomes measurement information system (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005–2008. Journal of Clinical Epidemiology, 63(11), 1179–1194.CrossRefPubMedPubMedCentral Cella, D., Riley, W., Stone, A., Rothrock, N., Reeve, B., Yount, S., Amtmann, D., Bode, R., Buysse, D., & Choi, S. (2010). The patient-reported outcomes measurement information system (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005–2008. Journal of Clinical Epidemiology, 63(11), 1179–1194.CrossRefPubMedPubMedCentral
go back to reference Chastin, S. F., De Craemer, M., De Cocker, K., Powell, L., Van Cauwenberg, J., Dall, P., Hamer, M., & Stamatakis, E. (2019). How does light-intensity physical activity associate with adult cardiometabolic health and mortality? Systematic review with meta-analysis of experimental and observational studies. British Journal of Sports Medicine, 53(6), 370–376.CrossRefPubMed Chastin, S. F., De Craemer, M., De Cocker, K., Powell, L., Van Cauwenberg, J., Dall, P., Hamer, M., & Stamatakis, E. (2019). How does light-intensity physical activity associate with adult cardiometabolic health and mortality? Systematic review with meta-analysis of experimental and observational studies. British Journal of Sports Medicine, 53(6), 370–376.CrossRefPubMed
go back to reference Ekblom-Bak, E., Börjesson, M., Bergman, F., Bergström, G., Dahlin-Almevall, A., Drake, I., Engström, G., Engvall, J. E., Gummesson, A., Hagström, E., Hjelmgren, O., Jernberg, T., Johansson, P. J., Lind, L., Mannila, M., Nyberg, A., Persson, M., Reitan, C., Rosengren, A., & Ekblom, Ö. (2022). Accelerometer derived physical activity patterns in 27.890 middle-aged adults: The SCAPIS cohort study. Scandinavian Journal of Medicine & Science in Sports, 32(5), 866–880. https://doi.org/10.1111/sms.14131CrossRef Ekblom-Bak, E., Börjesson, M., Bergman, F., Bergström, G., Dahlin-Almevall, A., Drake, I., Engström, G., Engvall, J. E., Gummesson, A., Hagström, E., Hjelmgren, O., Jernberg, T., Johansson, P. J., Lind, L., Mannila, M., Nyberg, A., Persson, M., Reitan, C., Rosengren, A., & Ekblom, Ö. (2022). Accelerometer derived physical activity patterns in 27.890 middle-aged adults: The SCAPIS cohort study. Scandinavian Journal of Medicine & Science in Sports, 32(5), 866–880. https://​doi.​org/​10.​1111/​sms.​14131CrossRef
go back to reference Ekelund, U., Brown, W. J., Steene-Johannessen, J., Fagerland, M. W., Owen, N., Powell, K. E., Bauman, A. E., & Lee, I. M. (2019a). Do the associations of sedentary behaviour with cardiovascular disease mortality and cancer mortality differ by physical activity level? A systematic review and harmonised meta-analysis of data from 850 060 participants. British Journal of Sports Medicine, 53(14), 886–894. https://doi.org/10.1136/bjsports-2017-098963CrossRefPubMed Ekelund, U., Brown, W. J., Steene-Johannessen, J., Fagerland, M. W., Owen, N., Powell, K. E., Bauman, A. E., & Lee, I. M. (2019a). Do the associations of sedentary behaviour with cardiovascular disease mortality and cancer mortality differ by physical activity level? A systematic review and harmonised meta-analysis of data from 850 060 participants. British Journal of Sports Medicine, 53(14), 886–894. https://​doi.​org/​10.​1136/​bjsports-2017-098963CrossRefPubMed
go back to reference Ekelund, U., Tarp, J., Steene-Johannessen, J., Hansen, B. H., Jefferis, B., Fagerland, M. W., Whincup, P., Diaz, K. M., Hooker, S. P., Chernofsky, A., Larson, M. G., Spartano, N., Vasan, R. S., Dohrn, I. M., Hagströmer, M., Edwardson, C., Yates, T., Shiroma, E., Anderssen, S. A., & Lee, I. M. (2019b). Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: Systematic review and harmonised meta-analysis. BMJ, 366, l4570. https://doi.org/10.1136/bmj.l4570 Ekelund, U., Tarp, J., Steene-Johannessen, J., Hansen, B. H., Jefferis, B., Fagerland, M. W., Whincup, P., Diaz, K. M., Hooker, S. P., Chernofsky, A., Larson, M. G., Spartano, N., Vasan, R. S., Dohrn, I. M., Hagströmer, M., Edwardson, C., Yates, T., Shiroma, E., Anderssen, S. A., & Lee, I. M. (2019b). Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: Systematic review and harmonised meta-analysis. BMJ, 366, l4570. https://​doi.​org/​10.​1136/​bmj.​l4570
go back to reference Ensari, I., Caceres, B. A., Jackman, K. B., Suero-Tejeda, N., Shechter, A., Odlum, M. L., & Bakken, S. (2021). Digital phenotyping of sleep patterns among heterogenous samples of Latinx adults using unsupervised learning. Sleep Medicine, 85, 211–220.CrossRefPubMedPubMedCentral Ensari, I., Caceres, B. A., Jackman, K. B., Suero-Tejeda, N., Shechter, A., Odlum, M. L., & Bakken, S. (2021). Digital phenotyping of sleep patterns among heterogenous samples of Latinx adults using unsupervised learning. Sleep Medicine, 85, 211–220.CrossRefPubMedPubMedCentral
go back to reference Feng, H., Yang, L., Liang, Y. Y., Ai, S., Liu, Y., Liu, Y., Jin, X., Lei, B., Wang, J., Zheng, N., Chen, X., Chan, J. W. Y., Sum, R. K. W., Chan, N. Y., Tan, X., Benedict, C., Wing, Y. K., & Zhang, J. (2023). Associations of timing of physical activity with all-cause and cause-specific mortality in a prospective cohort study. Nature Communications, 14(1), 930. https://doi.org/10.1038/s41467-023-36546-5CrossRefPubMedPubMedCentral Feng, H., Yang, L., Liang, Y. Y., Ai, S., Liu, Y., Liu, Y., Jin, X., Lei, B., Wang, J., Zheng, N., Chen, X., Chan, J. W. Y., Sum, R. K. W., Chan, N. Y., Tan, X., Benedict, C., Wing, Y. K., & Zhang, J. (2023). Associations of timing of physical activity with all-cause and cause-specific mortality in a prospective cohort study. Nature Communications, 14(1), 930. https://​doi.​org/​10.​1038/​s41467-023-36546-5CrossRefPubMedPubMedCentral
go back to reference Grgic, J., Dumuid, D., Bengoechea, E. G., Shrestha, N., Bauman, A., Olds, T., & Pedisic, Z. (2018). Health outcomes associated with reallocations of time between sleep, sedentary behaviour, and physical activity: A systematic scoping review of isotemporal substitution studies. International Journal of Behavioral Nutrition and Physical Activity, 15(1), 69. https://doi.org/10.1186/s12966-018-0691-3CrossRefPubMedPubMedCentral Grgic, J., Dumuid, D., Bengoechea, E. G., Shrestha, N., Bauman, A., Olds, T., & Pedisic, Z. (2018). Health outcomes associated with reallocations of time between sleep, sedentary behaviour, and physical activity: A systematic scoping review of isotemporal substitution studies. International Journal of Behavioral Nutrition and Physical Activity, 15(1), 69. https://​doi.​org/​10.​1186/​s12966-018-0691-3CrossRefPubMedPubMedCentral
go back to reference Guthold, R., Stevens, G. A., Riley, L. M., & Bull, F. C. (2018). Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1· 9 million participants. The Lancet Global Health, 6(10), e1077–e1086.CrossRefPubMed Guthold, R., Stevens, G. A., Riley, L. M., & Bull, F. C. (2018). Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1· 9 million participants. The Lancet Global Health, 6(10), e1077–e1086.CrossRefPubMed
go back to reference Healy, G. N., Wijndaele, K., Dunstan, D. W., Shaw, J. E., Salmon, J., Zimmet, P. Z., & Owen, N. (2008). Objectively measured sedentary time, physical activity, and metabolic risk: The Australian diabetes, obesity and lifestyle study (AusDiab). Diabetes care, 31(2), 369–371.CrossRefPubMed Healy, G. N., Wijndaele, K., Dunstan, D. W., Shaw, J. E., Salmon, J., Zimmet, P. Z., & Owen, N. (2008). Objectively measured sedentary time, physical activity, and metabolic risk: The Australian diabetes, obesity and lifestyle study (AusDiab). Diabetes care, 31(2), 369–371.CrossRefPubMed
go back to reference Horne, J. A., & Ostberg, O. (1976). A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. International Journal of Chronobiology, 4(2), 97–110.PubMed Horne, J. A., & Ostberg, O. (1976). A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. International Journal of Chronobiology, 4(2), 97–110.PubMed
go back to reference Kodama, S., Saito, K., Tanaka, S., Maki, M., Yachi, Y., Asumi, M., Sugawara, A., Totsuka, K., Shimano, H., Ohashi, Y., Yamada, N., & Sone, H. (2009). Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. Jama, 301(19), 2024–2035. https://doi.org/10.1001/jama.2009.681CrossRefPubMed Kodama, S., Saito, K., Tanaka, S., Maki, M., Yachi, Y., Asumi, M., Sugawara, A., Totsuka, K., Shimano, H., Ohashi, Y., Yamada, N., & Sone, H. (2009). Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. Jama, 301(19), 2024–2035. https://​doi.​org/​10.​1001/​jama.​2009.​681CrossRefPubMed
go back to reference McDonnell, E. I., Zipunnikov, V., Schrack, J. A., Goldsmith, J., & Wrobel, J. (2021). Registration of 24-hour accelerometric rest-activity profiles and its application to human chronotypes. Biological Rhythm Research, 1–21. McDonnell, E. I., Zipunnikov, V., Schrack, J. A., Goldsmith, J., & Wrobel, J. (2021). Registration of 24-hour accelerometric rest-activity profiles and its application to human chronotypes. Biological Rhythm Research, 1–21.
go back to reference Pulido, B., Franco-Pereira, A. M., & Lillo, R. E. (2021). Functional clustering via multivariate clustering arXiv preprint arXiv:2108.00217. Pulido, B., Franco-Pereira, A. M., & Lillo, R. E. (2021). Functional clustering via multivariate clustering arXiv preprint arXiv:2108.00217.
go back to reference Reiss, P. T., Goldsmith, J., Shang, H. L., & Ogden, R. T. (2017). Methods for scalar-on‐function regression. International Statistical Review, 85(2), 228–249.CrossRefPubMed Reiss, P. T., Goldsmith, J., Shang, H. L., & Ogden, R. T. (2017). Methods for scalar-on‐function regression. International Statistical Review, 85(2), 228–249.CrossRefPubMed
go back to reference Rovniak, L. S., Sallis, J. F., Saelens, B. E., Frank, L. D., Marshall, S. J., Norman, G. J., Conway, T. L., Cain, K. L., & Hovell, M. F. (2010). Adults’ physical activity patterns across life domains: Cluster analysis with replication. Health Psychology: Official Journal of the Division of Health Psychology American Psychological Association, 29(5), 496–505. https://doi.org/10.1037/a0020428CrossRefPubMed Rovniak, L. S., Sallis, J. F., Saelens, B. E., Frank, L. D., Marshall, S. J., Norman, G. J., Conway, T. L., Cain, K. L., & Hovell, M. F. (2010). Adults’ physical activity patterns across life domains: Cluster analysis with replication. Health Psychology: Official Journal of the Division of Health Psychology American Psychological Association, 29(5), 496–505. https://​doi.​org/​10.​1037/​a0020428CrossRefPubMed
go back to reference Sørensen, H., Goldsmith, J., & Sangalli, L. M. (2013). An introduction with medical applications to functional data analysis. Statistics in Medicine, 32(30), 5222–5240.CrossRefPubMed Sørensen, H., Goldsmith, J., & Sangalli, L. M. (2013). An introduction with medical applications to functional data analysis. Statistics in Medicine, 32(30), 5222–5240.CrossRefPubMed
go back to reference Tudor-Locke, C., Hatano, Y., Pangrazi, R. P., & Kang, M. (2008). Revisiting how many steps are enough? Medicine & Science in Sports & Exercise, 40(7), S537–S543.CrossRef Tudor-Locke, C., Hatano, Y., Pangrazi, R. P., & Kang, M. (2008). Revisiting how many steps are enough? Medicine & Science in Sports & Exercise, 40(7), S537–S543.CrossRef
Metagegevens
Titel
Characterizing daily physical activity patterns with unsupervised learning via functional mixture models
Auteurs
Ipek Ensari
Billy A. Caceres
Kasey B. Jackman
Jeff Goldsmith
Niurka M. Suero-Tejeda
Michelle L. Odlum
Suzanne Bakken
Publicatiedatum
21-09-2024
Uitgeverij
Springer US
Gepubliceerd in
Journal of Behavioral Medicine / Uitgave 1/2025
Print ISSN: 0160-7715
Elektronisch ISSN: 1573-3521
DOI
https://doi.org/10.1007/s10865-024-00519-w