Skip to main content

Welkom bij Erasmus MC & Bohn Stafleu van Loghum

Erasmus MC heeft ervoor gezorgd dat je Mijn BSL eenvoudig en snel kunt raadplegen. Je kunt je links eenvoudig registreren. Met deze gegevens kun je thuis, of waar ook ter wereld toegang krijgen tot Mijn BSL.

Registreer

Om ook buiten de locaties van Erasmus MC, thuis bijvoorbeeld, van Mijn BSL gebruik te kunnen maken, moet je jezelf eenmalig registreren. Dit kan alleen vanaf een computer op een van de locaties van Erasmus MC.

Eenmaal geregistreerd kun je thuis of waar ook ter wereld onbeperkt toegang krijgen tot Mijn BSL.

Login

Als u al geregistreerd bent, hoeft u alleen maar in te loggen om onbeperkt toegang te krijgen tot Mijn BSL.

Top

19-02-2025

A weighted predictive modeling method for estimating thresholds of meaningful within-individual change for patient-reported outcomes

Auteurs: Chong-Ye Zhao, Min-Qian Yan, Xiao-Han Xu, Chun-Quan Ou

Gepubliceerd in: Quality of Life Research

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Purpose

Calculating the threshold for meaningful within-individual change (MWIC) is essential for interpreting patient-reported outcomes (PRO). However, traditional methods of determining MWIC threshold yield varying estimates and lack a standardized approach. We aim to propose a novel method for more accurate MWIC threshold estimation.

Methods

We developed a weighted predictive modeling method. The weighting involved using the rank difference between PRO score change and the anchor of each individual. A Monte Carlo simulation was conducted to compare the performance of the new method and that of existing state-of-the-art methods. Simulation parameters included distributions of PRO score changes, sample sizes, improvement proportions, and correlation strengths. Statistical performance was assessed using relative bias (rbias), coefficient of variation (CV), and relative root mean squared error (rRMSE).

Results

Distribution-based methods had the largest rbias and rRMSE among all methods. Existing anchor-based methods except for the Terluin 2022 method were biased when the correlation strength was weak or when the improvement proportion was not 50%. The Terluin 2022 method requires estimating an important reliability parameter, and this method had highest CV compared to other predictive modeling methods. The new weighted method demonstrated the smallest rRMSE across most simulation settings. It also maintained relatively high accuracy under weak correlation strength or imbalanced improvement proportion. Similar results were presented under normal or skewed distributions of PRO score changes.

Conclusion

This novel method offers a simple and feasible alternative to existing predictive modeling methods for estimating MWIC threshold, which can facilitate the application of PRO.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
12.
go back to reference de Vet, H. C. W., Terwee, C. B., Mokkink, L. B., & Knol, D. L. (2011). Measurement in medicine: A practical guide. Cambridge University Press.CrossRef de Vet, H. C. W., Terwee, C. B., Mokkink, L. B., & Knol, D. L. (2011). Measurement in medicine: A practical guide. Cambridge University Press.CrossRef
14.
16.
go back to reference Qin, S., Nelson, L., Williams, N., Williams, V., Bender, R., & McLeod, L. (2022). Comparison of anchor-based methods for estimating thresholds of meaningful within-patient change using simulated PROMIS PF 20a data under various joint distribution characteristic conditions. Quality of Life Research. https://doi.org/10.1007/s11136-022-03285-xCrossRefPubMed Qin, S., Nelson, L., Williams, N., Williams, V., Bender, R., & McLeod, L. (2022). Comparison of anchor-based methods for estimating thresholds of meaningful within-patient change using simulated PROMIS PF 20a data under various joint distribution characteristic conditions. Quality of Life Research. https://​doi.​org/​10.​1007/​s11136-022-03285-xCrossRefPubMed
17.
go back to reference Griffiths, P., Sims, J., Williams, A., Williamson, N., Cella, D., Brohan, E., & Cocks, K. (2023). How strong should my anchor be for estimating group and individual level meaningful change? A simulation study assessing anchor correlation strength and the impact of sample size, distribution of change scores and methodology on establishing a true meaningful change threshold. Quality of Life Research, 32(5), 1255–1264. https://doi.org/10.1007/s11136-022-03286-wCrossRefPubMed Griffiths, P., Sims, J., Williams, A., Williamson, N., Cella, D., Brohan, E., & Cocks, K. (2023). How strong should my anchor be for estimating group and individual level meaningful change? A simulation study assessing anchor correlation strength and the impact of sample size, distribution of change scores and methodology on establishing a true meaningful change threshold. Quality of Life Research, 32(5), 1255–1264. https://​doi.​org/​10.​1007/​s11136-022-03286-wCrossRefPubMed
29.
Metagegevens
Titel
A weighted predictive modeling method for estimating thresholds of meaningful within-individual change for patient-reported outcomes
Auteurs
Chong-Ye Zhao
Min-Qian Yan
Xiao-Han Xu
Chun-Quan Ou
Publicatiedatum
19-02-2025
Uitgeverij
Springer New York
Gepubliceerd in
Quality of Life Research
Print ISSN: 0962-9343
Elektronisch ISSN: 1573-2649
DOI
https://doi.org/10.1007/s11136-025-03924-z